Pre-class Warm-up

Do you remember what the gradient of a function is?

Can we do grad f if
No.
a. $f: R \rightarrow R \wedge 2$? e.g. $f(t)=(t, t \wedge 2) \longleftarrow$ Another way to ask this: find grad f
b. $f: R \wedge 2 \rightarrow R$? e.g. $f(s, t)=s+t \wedge 2$ YeS
c. $f: R \wedge 3->R$? e.g. $f(x, y, z)=x y+z$

Second question: What is the difference between grad f and the denvative $D f$
a. Pretty much the same thu
b. Some similarities but different.
C. Completely diftérent

Third question: would you prefer it if I made the font a bit bigger?

隹 $f=$

1. Yes
2. No
b. grad $f=\left[\begin{array}{c}1 \\ 2 t\end{array}\right]$

$$
=(1,2 t)
$$

$$
D f=[1,2 t]
$$

$D f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 2 t
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=x+2 t \cdot y
$$

Section 2.6: Directional derivatives and the gradient

We learn:

- What is the directional derivative of a function $f: R \wedge 3->R$? (It could be $\mathrm{f}: \mathrm{R} \wedge \mathrm{n} \rightarrow \mathrm{R}$)
- The connection between the gradient and the directional derivative.
- The gradient points in the direction of greatest increase of f.
- The gradient points perpendicular to level sets.
- Using this to compute tangent planes etc.

The directional derivative
Suppose we have a function $f: R \wedge n \rightarrow R$. Let v be a vector of length 1 and a any vector in $R \wedge n$.
The directional derivative of f at a in the direction v is

$$
\lim _{t \rightarrow 0} \frac{f(a+t v)-f(a)}{t}
$$

What if v wasn't a unit vector?
We get confused.

The book sticks to $\mathrm{n}=3$. When $\mathrm{n}=2$ we can draw the graph of f :

The directional derivative is the slope of the graph in direction v.

Theorem 12 Let $f: R^{\wedge} n \rightarrow R$, a and v vectors in $R \wedge n$ with v of length 1 .
The directional derivative equals
matrix multi

$$
\operatorname{Df}(a)^{b} v=\operatorname{grad} f(a) \bullet v
$$

useful notation
If these are written out fully it looks like:

$$
\left.\frac{\partial f}{\partial x}\right|_{a} v_{1}+\left.\frac{\partial f}{\partial y}\right|_{a} v_{2}+\left.\frac{\partial f}{\partial z}\right|_{a} v_{3}
$$

Proof. We can use the chain rule.
\qquad The directimal derivative ls

$$
\begin{aligned}
& \left.\frac{d}{d t} f(c(t))\right|_{0} \approx D f(c(0)) \cdot D c(0) \\
& =\left[\left.\left.\left.\frac{\partial f}{\partial x}\right|_{a} \frac{\partial f}{\partial y}\right|_{a} \frac{\partial f}{\partial z}\right|_{a} c^{\prime}(t)\right.
\end{aligned}
$$

$$
=D f(a) \cdot v
$$

Example: Compute the directional derivative of $f(x, y)=x^{\wedge} 2+x y$ at $a=(1,2)$ in the direction of $(3 / 5,4 / 5)$.

$$
\nabla f=(2 x+y, x)
$$

The direction derivative is

$$
\nabla f \cdot(3 / 54 / 5)=\frac{3(2 x+y)}{5}+\frac{4 x}{5}
$$

evaluated at $(x, y)^{5}=(2,2)$.

Quick question:

Is $\partial f / \partial x$ any of the following?
a. a unit vector
b. a directional derivative, in direction x

c. a directional derivative, in direction y

Theorem 13 If $\operatorname{grad} f(a) \neq 0$ then $\operatorname{grad} f(a)$ points in the direction along which f is increasing the fastest.

Proof. In any unit direction v, f increases at rate $\nabla f(a) \cdot v$
$=\|\nabla f(a)\| \cdot\|v\| \cos \theta$ where
$\theta=$ angle between $\nabla f(*)$ and v_{1} This is largest when $\theta=0$, \checkmark points in direction $\nabla f(a)$

Theorem 14 If S is a level set of f defined by $f(a)=k$ then $\operatorname{grad} f(a)$ is perpendicular to S .
Proof. If v points tangentially to the level set then the slope off in that direction is O. Thule $\nabla f(a) \cdot v=0, \nabla f(a)$ is perpendicular to V .

This means we can compute tangent planes to surfaces, because grad f is a normal vector

Example. Compute the tangent plane to the surface $x^{\wedge} 2+y^{\wedge} 2+z=7$ at the point $(2,1,2)$.
Solution. The surface is a level set of the function $f(x, y, z)=x^{2}+y^{2}+z$

$$
\left.\nabla f=\left(\begin{array}{lll}
2 x & 2 y & 1
\end{array}\right)=\left(\begin{array}{lll}
4 & 2 & 1
\end{array}\right) \text { at } \begin{array}{ll}
2 & 1
\end{array}\right)
$$

The plane has equation $4 x+2 y+z=D$.
Substitute $(x, y, z)=(2, d, 2)$
to get $8+2+2=D=12$
Ansi. $4 x+2 y+z=12$

Like qu 4. You are walking on the graph of $f(x, y)=x y^{\wedge} 2+y+3$ standing at the point $(2,1,6)$. Find an (x, y)-direction you should walk in to stay at the same level.
Solutur. $\nabla f=\left(y^{2}, 2 x y+1\right)$
When $(x, y)=(2,1)$
$\nabla f(2,1)=(1,5)$
This is peri. to the level direction!
solve $\quad\left(v_{1}, v_{2}\right) \cdot(1,5)=0$
AnSi $(5,-1)$

