Pre-clage Warm-up

Do you remember what the gradient of a function
is?

Can we do grad f if

NO -
a. f:R->RA27? eg. f(t)
b. f:RA2->R? eg. f(st)=s5+1tA2 e s
c. f:RA3->R? eg. flxy,2) =
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Third question: would you prefer it if |
made the font a bit bigger?
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Section 2.6: Directional derivatives and the
gradient

We learn:

e What is the directional derivative of a
function f: RA3 -> R?
(It could be f: RAn ->R)

e The connection between the gradient and
the directional derivative.

e The gradient points in the direction of
greatest increase of f .

e The gradient points perpendicular to level
sets.

e Using this to compute tangent planes etc.




The directional derivative

Suppose we have a function f: RAn ->R.

Let v be a vector of length 1 and a any vector
in RAn .

The directional derivative of f at a in the
direction v is
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What if v wasn’t a unit vector?
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The book sticks to n=3. When n =2
we can draw the graph of f:
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The directional derivative is the slope of the
graph in direction v .



Theorem 12 Let f: RAn->R, a and v
vectors in RAn with v of length 1.

The directional derivative equals
Wy multn

Df(a)v=gradf(a) e v

If these are wrltten out fully it looks like:
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Proof. We can use the chain rule.
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Example: Compute the directional derivative of
f(x,y) = Xx\2 + xy a~<3
in the direction of (3/5,4/5).
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Quick question:
Is of / 6x any of the following?

a. a unit vector

b. a directional derivative, in direction x /

c. adirectional derivative, in direction y




Theorem 13 If grad f(a) #0 then grad f (a)
points in the direction along which fis increasing
the fastest.
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Theorem 14 If S is a level set of f defined
by f(a) =k then grad f (a) is perpendicular
to S.
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This means we can compute tangent planes
to surfaces, because grad f is a normal
vector



Like gn 4. You are walking on the graph of
f(x,y) = xyA2 + y + 3 standing at the point
(2,1,6). Find an (x,y)-direction you should
walk in to stay at the same level.

Example. Compute the tangent plane to the
surface xN\2 + yA2 + z =7 at the point

(2,1,2).
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